Dietrich Schüller

Keep Our Sounds Alive: Principles and Practical Aspects of Sustainable Audio Preservation
(including a glance on video)

Part 2
Signal Extraction from Original Carriers
Based on IASA-TC 04
With Contributions by Nadja Wallaszkovits

Workshop at Inforum 2016
Prague 23 May
Generally accepted principle for audio preservation since 1990, upcoming for video:
• all audiovisual carriers are prone to decay
• all audiovisual systems are threatened by obsolescence
• long term preservation can only be achieved in the digital domain by subsequent migration
• analogue and digital contents must be extracted from originals, analogue converted to digital, and both to file formats
• transfer is time consuming and expensive, and unlikely to be done again
consequently:
• original signals must be extracted and transferred in the best possible quality
Extraction/transfer parameters

- selection of carrier
- cleaning, carrier restoration
- replay equipment
- speed
- replay equalisation
- correction for errors caused by misaligned recording equipment
- removal of storage related signal artefacts
- time factor
Audio
• Historical mechanical formats
• Standard coarse groove discs
• Microgroove discs
• Magnetic tapes
• Digital magnetic carriers
• Optical carriers

Summarising comments on video
Historic mechanical and other obsolete formats
- cylinders
- coarse groove replicated discs
- all instantaneous discs
- selenophon
- magnetic wire

Except for standard coarse groove replicated discs seek expert’s advise - contact IASA Technical Committee:
http://www.iasa-web.org/

Coarse groove replicated discs ("shellacs", 78 rpms, pre 1900 - ~mid1950s)

Acoustically recorded: contact experts
Electrically recorded (=standard): from ~1925
Electrically recorded (standard) coarse groove discs

Selection: find best copy – also outside own collection

Cleaning: ultrasonic vs. “Keith Monks” et al. cleaning agents: distilled water plus wettning agent – NO alcohol

Restoration: no chemical, many mechanical problems

Replay equipment: professional /Hi-Fi equipment market stable

Pick-up systems: magnetic (stylus selection crucial), laser (upcoming), imaging (experimental)
Speed: correct in the analogue domain

Equalisation: recording frequency response is not flat on discs – many different equalisations needed
Consult IASA-TC 04

Correction for objective errors, and
Removal of storage related signal artefacts: do not apply

Time factor: 3-5x and more, depending on record condition and need for cleaning
Microgroove discs (LPs, vinyls)

Selection: find best copy – also outside own collection

Cleaning: ultrasonic vs. “Keith Monks“ et al. cleaning agents: distilled water plus wetting agent, isopropyl alcohol

Restoration: few chemical, (possible interaction with plastic bags): many mechanical problems

Replay equipment: professional /Hi-Fi equipment, market stable

Pick-up systems: magnetic, dynamic, laser (exotic)
Speed: correct in the analogue domain

Equalisation: RIAA – check pre-amplifier for accuracy

NB: pre1960 LPs may need different equalisation – consult IASA TC-04

Correction for objective errors, and

Removal of storage related signal artefacts: do not apply

Time factor: 2-3x and more, depending on record condition and need for cleaning
Magnetic tape

Selection
- applies to replicated cassettes and tapes (rare) only

Cleaning
- removal of dirt: dry, water, solvents
- removal of dry and bleeding splices
- replacement of leader tapes

Carrier restoration
- partly successful: curing tapes suffering from pigment binder breakdown
- available soon: re-conditioning of brittle acetate tapes

Do NOT lubricate tapes without special advice
Replay equipment
- recording and replay distortions do not compensate, but multiply each other
- choose equipment of latest generation to minimise replay distortions
- equipment must fully comply with format specific parameters: speed
 track width
 equalisation (EQ)
 noise reduction system (NR)

Problem of ever increasing dimension:
Availability of high quality equipment and spare parts
Various quarter inch tape track formats:

- Vollspur
- Halbspur Mono
- Halbspur Amateur-Stereo
- Viertelspur

1. Vollspur
2. Halbspur Mono
3. Halbspur Amateur-Stereo
4. Viertelspur

- 1/1 Spur Vollspur
- 1/2 Spur Mono-Halbspur
- 2/2 Spur Stereo-Halbspur
- 2/4 Spur Viertelspur

Dimensions:
- 6.3
- 2.3
- 2.0
- 1.7
- 2.3
- 1.0
- 1.0
- 0.75
- 0.75
- 1.75

Signal Extraction
Butterfly head – professional stereo 2 x 2.775mm

Recording and replay heads must have the same track width. Any differences cause losses in signal-to-noise ratio, if not an inseparable mix of unrelated signals.
Compact cassette formats

mono

stereo
S/N vs track width

![Graph](image)

- **S/N** vs **track width** graph showing the relationship between signal-to-noise ratio (S/N) and track width. The graph plots the ratio of RG to RG\textsubscript{min} against track width in millimeters (mm).
Equalisation

Recording frequency response is not “flat” on tapes
• different norms CCIR (IEC) vs NAB
• different for speeds
• historical EQs

Replay frequency response must compensate recording curve
Correct equalisation difficult to assess if unknown
Equalisation curves for various consumer tape formats

- **Equalisation curves** for various consumer tape formats are shown in the diagram.
- The curves represent different tape formats and their equalisation properties.
- The diagram includes points for specific delays and equalisation levels.
- The axes are labeled with frequency (Hz/kHz) on the x-axis and equalisation (dB) on the y-axis.
- The curves indicate how the equalisation changes with frequency for each format.
- The formats are identified by specific points and labels, such as **BP19**, **BP9.5**, and **BP4.75**.
- The equalisation levels are marked for different delay times, such as **3180 + 50 μs a**, **3180 + 90 μs b**, **3180 + 70 μs c**, and **3180 + 120 μs d**.
- The diagram uses a graph to illustrate the relationship between frequency and equalisation for each format.
Tape equalisations including historical EQs 1

<table>
<thead>
<tr>
<th>Tape Speed</th>
<th>Standards Organisation</th>
<th>Year of Publication</th>
<th>Time Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 ips, 76 cm/s</td>
<td>IEC2 AES</td>
<td>(1981) current standard</td>
<td>∞</td>
</tr>
<tr>
<td>30 ips, 76 cm/s</td>
<td>CCIR IEC I DIN</td>
<td>(1953-1966)</td>
<td>∞</td>
</tr>
<tr>
<td>15 ips. 38 cm/s</td>
<td>IEC I CCIR DIN BS</td>
<td>(1968) current standard</td>
<td>∞</td>
</tr>
<tr>
<td>15 ips. 38 cm/s</td>
<td>NAB EIA</td>
<td>(1953) current standard</td>
<td>3180 μs</td>
</tr>
</tbody>
</table>
Tape equalisations including historical EQs 2

<table>
<thead>
<tr>
<th>Speed</th>
<th>IEC 1</th>
<th>IEC 2</th>
<th>(1968) current standard</th>
<th>(1965) current standard</th>
<th>(up to)</th>
<th>(up to)</th>
<th>(up to)</th>
<th>70 µs</th>
<th>50 µs</th>
<th>100 µs</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 1/2 ips, 19 cm/s</td>
<td>DIN (studio)</td>
<td>DIN (home)</td>
<td>1965</td>
<td>3180 µs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCIR</td>
<td>EIA</td>
<td>1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIAA</td>
<td>(1963)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1968)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 1/2 ips, 19 cm/s</td>
<td>IEC 2</td>
<td>Ampex (home)</td>
<td>(1967)</td>
<td>∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAB</td>
<td>EIA (proposed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 1/2 ips, 19 cm/s</td>
<td>CCIR</td>
<td>IEC</td>
<td>(up to 1966)</td>
<td>∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIN</td>
<td>(up to 1968)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BS</td>
<td>(up to 1965)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tape equalisations including historical EQs

<table>
<thead>
<tr>
<th>Speed</th>
<th>System</th>
<th>Standard</th>
<th>Impedance</th>
<th>Z_{in}</th>
<th>Z_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3⅓/4 ips 9.5 cm/s</td>
<td>IEC2</td>
<td>(1968) current standard</td>
<td></td>
<td>3180 μs</td>
<td>90 μs</td>
</tr>
<tr>
<td></td>
<td>NAB</td>
<td>(1965)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RIAA</td>
<td>(1968)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3⅓/4 ips 9.5 cm/s</td>
<td>DIN</td>
<td>(1962)</td>
<td>3180 μs</td>
<td></td>
<td>120 μs</td>
</tr>
<tr>
<td>3⅓/4 ips 9.5 cm/s</td>
<td>DIN</td>
<td>(1955-1961)</td>
<td>∞</td>
<td></td>
<td>200 μs</td>
</tr>
<tr>
<td>3⅓/4 ips 9.5 cm/s</td>
<td>Ampex (home)</td>
<td>(1967)</td>
<td>∞</td>
<td></td>
<td>100 μs</td>
</tr>
<tr>
<td></td>
<td>EIA (proposed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3⅓/4 ips 9.5 cm/s</td>
<td>IEC</td>
<td>(1962-1968)</td>
<td>3180 μs</td>
<td></td>
<td>140 μs</td>
</tr>
<tr>
<td>3⅓/4 ips 9.5 cm/s</td>
<td>Ampex</td>
<td>(1953-1958)</td>
<td>3180 μs</td>
<td></td>
<td>200 μs</td>
</tr>
</tbody>
</table>
Tape equalisations including historical EQs 4

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15/16 ips 2.38 cm/s</td>
<td>undefined</td>
<td></td>
</tr>
</tbody>
</table>
Noise reduction systems
• Dolby A - professional
• Dolby SR - professional
• Dolby B consumer - Compact Cassettes
• Dolby C consumer - Compact Cassettes
• Telcom C4 - professional
• Hicom consumer – Compact Cassette
• dBX – (semi) professional

Encoded tapes must be appropriately decoded –
Problem: Noise reduction system difficult to determine if unknown – best indicator: steady background hiss
Imperative *before* replay of originals

- compensation for misaligned recording heads - azimuth error, vertical head position

 use magnetic suspension to check track width and vertical head position

- removal of storage related signal artefacts - print through

 wind tapes in the fast wind mode 3 or more times to minimise print through

Both corrections impossible once signal has been transferred to another carrier!
Head and tape path adjustments

Azimuth: head gap 90° to tape movement

Vertical head position

Inclination

Tangential adjustment

Tape tension

Bandandruck

Tangential-einstellung
2x2mm stereo head from a semi-professional recorder

Note: mal-produced head and multiple misalignment of original mounting
Magnetic powder to make tracks visible
Minimisation of print through

Rewind tape in fast wind mode at least 3 times before reply

Print through also affects linear audio tracks of video tapes, but not the video signal or any digital signals.
Transfer of digital audio contents from streaming (EIAJ, R-DAT) to file formats

• 3-tier error correction: full – interpolation – muting
• transferred signals must (should) be free of interpolated errors
• tape path adjustment and/or cleaning may considerably improve error rate
• check error status and keep a record of unavoidable interpolations
Time factor (technical transfer only) for one operator:

Classical scenario for magnetic tape - fairly uniform and technically regular holdings: 3x
(1 hour of analogue original needs 3 hours of work)

“Factory” transfer in broadcast archives: much faster – 1 operator runs 3-4 transfer stations
• high investment in equipment, for highly uniform holdings only
• generally unsuitable for heritage collections
3x and more for:

- analogue tape (heritage) holdings in NSAs and ResSA
- historical digital formats (EIAJ)

Additional time element: transfer of metadata
Optical carriers

Selection for replicated CDs/DVDs as for LPs

Cleaning and restoration with greatest care only, accompanied by error testing before and after work

Selection of replay equipment less important than with analogue originals, may, however, influence retrievability of –R and –RW disks

Speed, equalisation, correction for errors caused by misaligned recording equipment, and removal of storage related signal artefacts do not apply
Time factor

CDs and DVDs can be transferred at higher speeds than real time

Be **careful**, however: check consistency of error correction at higher transfer speed
Video signal extraction: specific problems 1

Tape cleaning: crucial element for heavily used tapes – cleaning machines for several formats available

Replay equipment:
- variety of television standards: SD: Historical b/w, NTSC, Secam, PAL – variety of HD standards
- vast number of historical obsolete formats
- variety of different versions within one format, e.g. U-Matic: LB, HB, SP
- variety of different sound representations within one format
- rapidly shrinking market
Video signal extraction: specific problems 2

High level technical expertise needed to maintain and adjust replay equipment – hire retired television engineers as consultants

Improved signal retrieval from composite formats by direct component extraction possible – implementation, however, not yet available for all formats
Digital video target formats: Television archives practice vs archival principles:

In the past, TV-archives generally transferred analogue and linear digital holdings to data reduced (“compressed”) production formats, e.g. DigiBeta or MPEG-50 formats.

Research archives pioneered, followed by national and television archives.
Outsourcing

• originating from North America, outsourcing of archival services has become widespread standard
• commercial companies must comply with archival standards, such as IASA-TC 03, 04, etc.
• general problem of commercial services: professional control
Summary general

• signal retrieval from original carriers determines the quality for the rest of a document’s life
• employ all skills at a given time to retrieve signals at best possible quality
• transfer technology may improve, digital storage capacities will increase, and expectations will rise accordingly, therefore….

…keep the originals whenever possible – you may wish to come back!
IASA Technical Committee
Standards, Recommended Practices and Strategies

http://www.iasa-web.org/

Juha Henriksson & Nadja Wallaszkovits: Digitisation workflow for analogue open reel tapes
http://www.jazzpoparkisto.net/audio

Franz Pavuza: Short Guidelines for Video Digitisation, 2008
http://www.tape-online.net/Short_Guidelines_Video_Digitisation.pdf

IASA-TC 06: Guidelines on the Production and Preservation of Digital Audio Objects, ed. by Kevin Bradley (forthcoming)
Thank you!

dietrich.schueller@oeaw.ac.at
www.pha.oeaw.ac.at